Inteligencia Artificial aplicado a la Medicina

Las redes neuronales son una rama de la Inteligencia Artificial.
Entre las áreas de aplicación de las redes se encuentran entre otras las siguientes:
Análisis Financiero; Procesado de Imágenes  en el ámbito de la Medicina, Industria y Defensa; Diagnóstico Médico y Comercial; Robótica y Control; Reconocimiento y Síntesis de Voz; Clasificación de Datos provenientes de sensores; Compresión y Codificación de Información.

Las redes neuronales artificiales son modelos matemáticos que pueden ser entrenados para aprender relaciones no lineales entre un conjunto de datos de entrada y un conjunto de datos de salida. En medicina la aplicación más común de estos modelos, es la clasificación de patrones con el propósito de apoyar al médico en el diagnóstico y tratamiento del paciente.

APLICACIONES EN MEDICINA

Análisis de imágenes
En la práctica los médicos tienen que evaluar información de imágenes obtenidas con ultrasonido, resonancia magnética, medicina nuclear y radiología.
Normalmente se hace un análisis cualitativo por inspección visual; sin embargo, un examen cuantitativo presenta las siguientes ventajas: (i) los diagnósticos de distintos laboratorios usando los mismos criterios se pueden verificar, (ii)los datos para un sujeto se pueden comparar con una base de datos de personas normales para decidir automáticamente si existe la anormalidad, (iii) los hallazgos para un sujeto se pueden comparar con una base de datos con distintas enfermedades y detectar el tipo de anormalidad, (iv) los resultados de una serie

de exámenes del mismo paciente se pueden comparar para determinar la evolución de la enfermedad y analizar la respuesta al tratamiento.

Ultrasonido
Se han desarrollado modelos para cardiología, identificación de tejido del hígado y oftalmología.
Detección de infartos: las ecografías de corazón de sujetos normales y con infarto de miocardio se digitalizaron en una matriz de 256×256 pixeles con 256 niveles de gris. Las regiones de interés fueron seleccionadas por un cardiólogo en una matriz de 1Ox1Opixeles. Se entrenó una red neuronal multicapa para reconocer pequeñas diferencias entre el miocardio normal y anormal.

Resonancia magnética
Se han desarrollado varias aplicaciones para segmentar las imágenes; las redes neuronales han mostrado su utilidad en la identificación de vasos sanguíneos.

Segmentación de imágenes del cerebro: la segmentación de imágenes médicas obtenidas con resonancia magnética es muy importante para la visualización de tejidos suaves en el cuerpo humano. Se entrenó una red neuronal para clasificar los siguientes seis tipos de tejido: fondo, fluido cerebroespinal, materia blanca, materia gris, cráneo y grasa. Los resultados soportan el uso de redes neuronales como método para clasificar imágenes médicas.

Medicina nuclear
El análisis de imágenes con redes neuronales en medicina nuclear incluye tomografía por emisión de positrones (PET) y tomo grafía computarizada por emisión de un fotón (SPECT).

Diagnóstico de la enfermedad de Alzheimer: se obtuvieron imágenes PET de pacientes normales y pacientes con Alzheimer. Adicionalmente, para cada sujeto se midieron ocho parámetros que representan el metabolismo de la glucosa en los ocho lóbulos del cerebro (izquierdo y derecho): frontal, parietal, temporal, y occipital.

Se entrenó una red neuronal para clasificar los sujetos en las categorías normal y con enfermedad de Alzheimer, en pruebas de generalización la red clasificó correctamente el 92% de los casos. La red neuronal superó a los métodos estadísticos estándar como el análisis discriminante.

Radiología
Se han utilizado redes neuronales para analizar angiografías y mamografías.
Angiografía de arteria coronaria: se utiliza una red neuronal que recibe 121 (11×11) entradas, tiene 17 neuronas ocultas y dos salidas. Se hace un barrido de la imágen de 256x256x 8 bit usando una máscara de 11xll pixeles, la red clasifica el pixel central de la máscara como vaso o fondo. Los resultados sugieren que una red neuronal puede lograr una tasa de detección de vasos aceptable.

Los estudios comparativos, en análisis de imágenes, entre redes neuronales y métodos estadísticos clásicos como máxima verosimilitud y análisis discriminante reportaron igual o mejor desempeño de la red.
En el futuro veremos más aplicaciones de las redes neuronales en el análisis de imágenes. Nuevos algoritmos de entrenamiento, como alternativa al de propagación inversa, unidos a desarrollos en electrónica permitirán la construcción de procesadores de imágenes con redes neuronales.

CONCLUSIONES

La capacidad de las redes neuronales como clasificadores ha sido demostrada teóricamente y con múltiples aplicaciones. Los posibles usuarios tienen la opción de comprar un paquete o escribir sus programas para entrenar redes neuronales y luego usarlas como sistemas expertos.

Las redes neuronales introducen las ventajas de un examen cuantitativo en la práctica médica. Los registros médicos contienen información valiosa que puede ser utilizada para entrenar redes neuronales y crear sistemas expertos, estos enriquecen el diagnóstico del médico general y brindan una nueva perspectiva al médico especialista.

2 Comments
  1. My brother recommended I might like this website.
    He used to be entirely right. This put up truly made my day.
    You can not consider simply how much time
    I had spent for this info! Thank you!

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Website Protected by Spam Master